
LA-UR-22-28759
Approved for public release; distribution is unlimited.

Title: API Requirement for LANL's Next-Gen KV-Based Storage

Author(s): Zheng, Qing
Manno, Dominic Anthony

Intended for: Report

Issued: 2022-08-19 (Draft)

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security
Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government
retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government
purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of
Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does
not endorse the viewpoint of a publication or guarantee its technical correctness.

API Requirement for LANL's Next-Gen KV-Based Storage (Draft, Ver1.0)
1 Device-Level Operations

API Description Notes
1.1 KV_dev_format Format a given device. Reset to factory. Purge all existing

data. Clean up all error states.
A device can be identifyed by an address string using a format
determined by the vendor.

1.2 KV_dev_ping Ping a device. The goal is to check device existence over a network. It can also be
used to verify if an address has the right format.

1.3 KV_dev_open Open a device and return a handle to it for followup
operations. A client may be required to specify certain
configurations.

A device should allow multiple processs and threads running on
potentially different compute nodes to concurrently open a device
and simultaneously perform operations on it.

1.4 KV_dev_open_readonly For better perfomance, security, and potentially less in-
memory state mangement, a device may be opened with only
read accesses.

Readonly objects are always easier to work with.

1.5 KV_dev_stat Report device level stats such as current logical space usage,
physical space usage, space left, current keyspace count, and
potentially other per-device information.

This will be something similar to fsstat.

1.6 KV_dev_close Disconnect from a device, release client side resources, and
release the device handle.

A client may abort a program without calling KV_dev_close. For
example, a program terminated by Ctrl+C.

2 Keyspace-Level Operations (in general all keyspace operations require a dev handle)
API Description Notes

2.1 KV_keyspace_list List all existing keyspaces within a given device. Keyspaces are identified by names. Keyspace names are unique
within a device. Implementation is expected to allow at least 255
characters for a keyspace name (similar to a filesystem's
NAME_MAX). Keyspace names are not necessarily C-style strings.

2.2 KV_keyspace_exist Check existence of a certain keyspace.
2.3 KV_keyspace_create Create a new keyspace with a user-specified keyspace name.

If a keyspace with the given name already exists, either return
an error (O_EXCL) or remove all existing data within the
keyspace (O_TRUNC). A client may be required to specify
certain configurations for the keyspace.

2.4 KV_keyspace_open Open a keyspace and return a handle to it for followup
operations. If the given keyspace does not exist, either return
an error or dynamically create it (O_CREAT).

Multiple processes and threads from different nodes may
simultaneously access a single keyspace.

2.5 KV_keyspace_open_readonly Open a keyspace with only read accesses to ease
concurrency control and state management.

2.6 KV_keyspace_compact Seal a keyspace (no more writes) and request compaction on
it. In general, compaction sorts data by key and creates an
index on the keys. In addition, compaction also builds a
histogram on the keys so that a client can later retrieve the
histogram and know the key's distribution.

The idea is that a writer creates a keyspace, opens it, inserts data
into it, and calls compaction to have data sorted and indexed. Then,
a reader opens the keyspace and performs queries. In general,
scientific simulations tend not to read their data until after the
simulation is done and all data is written to storage.

2.7 KV_keyspace_is_compacted Check if a given keyspace has finished compaction and is
ready for queries.

2.8 KV_keyspace_histogram Return the histogram built by the compaction process.
2.9 KV_keyspace_stat Report keyspace level stats such as current logical/physical

space usage, current key count, and other per-keyspace
information.

2.10 KV_keyspace_close Close a given keyspace, release client side resources, and
release the keyspace handle.

A client may abort a program without ever calling
KV_keyspace_close.

2.11 KV_keyspace_delete Delete a keyspace and all its data. Deletion may be deferred when there are one or more outstanding
handles to the keyspace, in which case the keyspace will be deleted
when all parties release their handles.

2.12 KV_keyspace_export Export data from a keyspace to a file. Data may be exported into a user specified file format such as
SSTable, Parquet, HDF5, or other open-source formats.

2.13 KV_keyspace_import Import data into a keyspace from an external file.

3 KV-Level Operations (in general all KV operations require a keyspace handle)
API Description Notes

3.1 KV_kv_put Insert a single KV pair into a given keyspace. Clients can ensure that keys are unique (no conflict). For a given
keyspace, KV sizes are always fixed (no varlen K or V is required).
Implementation should support keys up to 256B and values up to
4KB. Data persistence at keyspace level is sufficient (KV-level
persistence is not required, either an entire keyspace is retained or
lost after all keys are inserted).

3.2 KV_kv_bulkput Insert a batch of KV pairs into a given keyspace.
3.3 KV_kv_get Point query on a key. Keyspace must have already been compacted before queries may

take place.
3.4 KV_kv_rangeget Range query over keys. Clients provide ranges in the form of min and max.

4 Advanced Query Operations (multi-dimensional query capability)
API Description Notes

4.1 KV_query_create Create a query object from a user supplied SQL-like query
string such as "select X, Y, Z where E > 3".

KV schema (which portion of a Value is X and what is its data type)
can be specifed at keyspace creation time. For example, byte 0-3 of
V is X and X is a float.

4.2 KV_query_estimate Estimate the result for running a given query on a specified
keyspace.

This is to use keyspace indexes to estimate the number of KV pairs
that might match a given query. This helps a client prepare a large
enough buffer space to host the actual query result.

4.3 KV_query_run Execute a given query on a specified keyspace.
4.4 KV_query_release Release the query object.

